領   取
精品課
中小學個性化輔導
關于我們  |  聯系我們

高一數學上冊第一章集合與函數概念

來源:學大教育     時間:2021-04-02     

數學的一些知識一直都是大部分同學覺得比較難,但是真正難的方面,也許是在學習方法上沒有找對方向,那么今天讓我們共同努力培養良好的學習習慣,只有發奮學習,才能夠立志成才,現在為大家整理了高一數學上冊的集合與函數概念知識來供大家參考。

1.1集合

111集合的含義與表示

1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.

7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.

10.列舉法表示為{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示為(x,y)|y=x+2,

y=x2.

11.-1,12,2.

112集合間的基本關系

1.D.2.A.3.D.4.,{-1},{1},{-1,1}.5..6.①③⑤.

7.A=B.8.15,13.9.a≥4.10.A={,{1},{2},{1,2}},B∈A.

11.a=b=1.

113集合的基本運算(一)

1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.

8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.

11.{a|a=3,或-22

113集合的基本運算(二)

1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.

7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.

10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.

11.a=4,b=2.提示:∵A∩綂UB={2},∴2∈A,∴4+2a-12=0a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂UB={2},∴-6綂UB,∴-6∈B,將x=-6代入B,得b2-6b+8=0b=2,或b=4.①當b=2時,B={x|x2+2x-24=0}={-6,4},∴-6綂UB,而2∈綂UB,滿足條件A∩綂UB={2}.②當b=4時,B={x|x2+4x-12=0}={-6,2},

∴2綂UB,與條件A∩綂UB={2}矛盾.

1.2函數及其表示

121函數的概念(一)

1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).

7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.

10.(1)略.(2)72.11.-12,234.

121函數的概念(二)

1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.

7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).

9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).

122函數的表示法(一)

1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.

8.

x1234y828589889.略.10.1.11.c=-3.

122函數的表示法(二)

1.C.2.D.3.B.4.1.5.3.6.6.7.略.

8.f(x)=2x(-1≤x<0),

-2x+2(0≤x≤1).

9.f(x)=x2-x+1.提示:設f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展開得2ax+(a+b)=2x,所以2a=2,

a+b=0,解得a=1,b=-1.

10.y=1.2(0

2.4(20

3.6(40

4.8(60

1.3函數的基本性質

131單調性與最大(小)值(一)

1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.

7.略.8.單調遞減區間為(-∞,1),單調遞增區間為[1,+∞).9.略.10.a≥-1.

11.設-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函數y=f(x)在(-1,1)上為減函數.

131單調性與最大(小)值(二)

1.D.2.B.3.B.4.-5,5.5.25.

6.y=316(a+3x)(a-x)(0

11.日均利潤最大,則總利潤就最大.設定價為x元,日均利潤為y元.要獲利每桶定價必須在12元以上,即x>12.且日均銷售量應為440-(x-13)·40>0,即x<23,總利潤y=(x-12)[440-(x-13)·40]-600(12

132奇偶性

1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.

7.(1)奇函數.(2)偶函數.(3)既不是奇函數,又不是偶函數.(4)既是奇函數,又是偶函數.

8.f(x)=x(1+3x)(x≥0),

x(1-3x)(x<0).9.略.

10.當a=0時,f(x)是偶函數;當a≠0時,既不是奇函數,又不是偶函數.

11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<32b-32b<00

單元練習

1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.

10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].

15.f12

17.T(h)=19-6h(0≤h≤11),

-47(h>11).18.{x|0≤x≤1}.

19.f(x)=x只有唯一的實數解,即xax+b=x(*)只有唯一實數解,當ax2+(b-1)x=0有相等的實數根x0,且ax0+b≠0時,解得f(x)=2xx+2,當ax2+(b-1)x=0有不相等的實數根,且其中之一為方程(*)的增根時,解得f(x)=1.

20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以該函數是偶函數.(2)略.(3)單調遞增區間是[-1,0],[1,+∞),單調遞減區間是(-∞,-1],[0,1].

21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×65=13.65.

(2)f(x)=1.3x(0≤x≤5),

3.9x-13(5

6.5x-28.6(6

22.(1)值域為[22,+∞).(2)若函數y=f(x)在定義域上是減函數,則任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范圍是(-∞,-2).

也許有的同學看到這里會覺得難度比較大,但是數學的一些知識一定要多練習,這樣才能夠在后期來提高學習成績,從而有一個理想的分數。

網站地圖 | 全國免費咨詢熱線: | 咨詢時間:8:00-23:00(節假日不休)

京ICP備10045583號-6 學大Xueda.com 版權所有 北京學大信息技術集團有限公司 京公網安備 11010502031324號

增值電信業務經營許可證京B2-20100091 電信與信息服務業務經營許可證京ICP證100956

高清性色生活片97_亚欧乱色熟女一区二区_日本2020三级片在线观看